Série de TD n°3: Analyse syntaxique

Grammaire, arbre de dérivation, les méthodes d'analyse

Exercice 1:

- 1. Trouver la grammaire générant le langage des chaînes de la forme $a^n b^n$, où $n \ge 0$.
- 2. Trouver la grammaire générant le langage des chaînes contenant un nombre impair de "a" et n'importe quel nombre de "b".
- 3. Trouver la grammaire générant le langage des chaînes de la forme aⁿb^m où n≥0 et m≥0, c'està-dire des chaînes de "a" suivies de "b".

Solution:

1. Trouver la grammaire générant le langage des chaînes de la forme a^n b^n , où $n \ge 0$.

 $S \rightarrow aSb|\epsilon$

2. Trouver la grammaire générant le langage des chaînes contenant un nombre impair de "a" et n'importe quel nombre de "b".

 $S \rightarrow aA$ $A \rightarrow aS \mid bA \mid \epsilon$

> 3. Trouver la grammaire générant le langage des chaînes de la forme aⁿb^m où n≥0 et m≥0, c'està-dire des chaînes de "a" suivies de "b".

 $S \rightarrow aS \mid A$ $A \rightarrow bA \mid \epsilon$

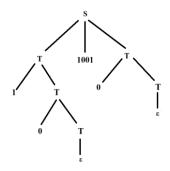
Exercice 2:

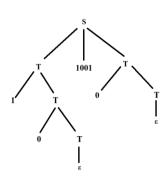
Soit l'alphabet $\Sigma = \{0,1\}$, et soit le langage L sur l'alphabet Σ qui comportent les chaines 1001.

- 1) Donner la grammaire hors contexte qui engendre le langage L.
- 2) Donner l'arbre de dérivation des mots **001,1010010**, en utilisant la méthode descendante naïve :
 - a) Avec récursivité à gauche.
 - b) Avec récursivité à droite.
 - c) Est-ce que à travers ces mots nous pouvons conclure que la grammaire est ambigüe ?
 - d) Prouvez que la grammaire est ambigüe ?
- 3) Donner la grammaire des mots binaires qui acceptent la division sur 2 et commencent obligatoirement par 0
- 4) Donner la dérivation syntaxique des mots 01100, 01010.

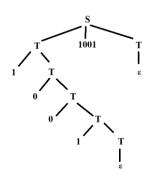
Solution:

1) - Le grammaire : $G = \{S, Vt, Vn, P\}$


 $Vt = \{0,1\}$


 $Vn = \{S, T\}$

 $S \rightarrow T1001T$


 $T \rightarrow 0T \mid 1T \mid \epsilon$

- 2) Arbres de dérivation de **1010010** :
- a) Avec récursivité à gauche :
- b) Avec récursivité à droite :

- c) Nous ne pouvons pas conclure que la grammaire est ambigüe à travers un seul mot.
- d) Pour le mot 10011001 nous avons deux arbres de dérivation donc la grammaire est ambigüe :

$$\begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

3) - Le grammaire :
$$G = \{S, Vt, Vn, P\}$$

 $Vt = \{0,1\}$

 $Vn = \{S, T\}$

 $S \rightarrow 0T0 \mid 0$

 $T \rightarrow 0T \mid 1T \mid \epsilon$

4) Donner la dérivation syntaxique des mots 01100, 01010 :

Arbre de dérivation de 01100 :

Arbre de dérivation de 01010 :

Exercice 3:

Soit l'alphabet $\Sigma = \{a,b,\epsilon\}$, et soit le langage L sur l'alphabet Σ engendré par la grammaire G, dont les règles de production se présentent comme suit :

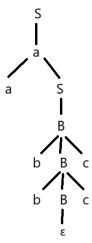
 $S \rightarrow aS \mid B$

B → bBc|ε

1) Est-ce que les mots suivants appartiennent aux langages L **abc**, **abbc** (utiliser la méthode LR)

 $S \rightarrow aS \mid B$

B → bBc | ε


Pour le mot **abc**:

Pointeur	Pile	Opération
\$abc	\$	Décalage
\$bc	\$a	Décalage
\$c	\$ab	Réduction B → ε
\$c	\$abB	Décalage
\$	\$abBc	Réduction B → bBc
\$	\$aB	Réduction S → B
\$	\$aS	Réduction S → aS
\$	\$S	Validation

Pour le mot **abbc**:

Pointeur	Pile	Opération
\$abbc	\$	Décalage
\$bbc	\$a	Décalage
\$bc	\$ab	Décalage
\$c	\$abb	Réduction B → ε
\$c	\$abbB	Décalage
\$	\$abbBc	Réduction B → bBc
\$	\$aB	Erreur

2) Combien d'arbre de dérivation peut-on retrouver pour le mot **aaaacbbbbb (aabbcc)**, si on commence par l'axiome ? En déduire le type de la grammaire.

La grammaire n'est pas ambiguë.

Exercice 4:

Soit la grammaire G sur l'alphabet $\Sigma = \{a,b\}$, dont les règles de production se présentent comme suit :

$$S \rightarrow B B$$

 $B \rightarrow a B \mid b$

- 1) Donner les caractéristiques de la grammaire G
- 2) En utilisant la méthode LR, identifier l'appartenance des mots **bb, abb, abbab** aux langages L.
- 3) Donner l'arbre de dérivation en commençant par l'axiome du mot ababb ? Combien de dérivation possible pour ce mot ? En déduire le type de la grammaire.

Solution:

1) Caractéristiques de la grammaire G :

$$G = \{S , Vt, Vn, P\}$$

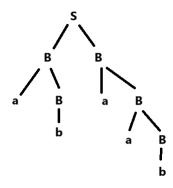
$$Vt = \{a, b\}$$

$$Vn = \{B\}$$
Liste des productions P:
$$S \rightarrow B B$$

$$B \rightarrow a B \mid b$$

2) En utilisant la méthode LR, identifier l'appartenance des mots bb, abb, abbab aux langages L.

Pour le mot : bb


Pointeur	Pile	Opération
\$bb	\$	Décalage
\$b	\$b	Réduction B → b
\$b	\$B	Décalage
\$	\$Bb	Réduction B → b
\$	\$BB	Réduction S → BB
\$	\$S	Acceptation

Pour le mot : abb

Pointeur	Pile	Opération
\$abb	\$	Décalage
\$bb	\$a	Décalage
\$b	\$ab	Réduction
\$b	\$aB	Réduction
\$b	\$B	Décalage
\$	\$Bb	Réduction
\$	\$BB	Réduction
\$	\$S	Acceptation

Pour le mot : abbab (la chaîne n'est pas acceptée)

3) Donner l'arbre de dérivation en commençant par l'axiome du mot abaab ? Combien de dérivation possible pour ce mot ? En déduire le type de la grammaire.

Il n'y a qu'un seul arbre de dérivation valide pour le mot "abaab" avec cette grammaire.

Normalement à travers un seul mot on ne peut pas conclure que la grammaire n'est pas ambigüe, mais après une petite analyse de la structure cette grammaire n'est pas ambigüe.